34 research outputs found

    Stable soft extrapolation of entire functions

    Full text link
    Soft extrapolation refers to the problem of recovering a function from its samples, multiplied by a fast-decaying window and perturbed by an additive noise, over an interval which is potentially larger than the essential support of the window. A core theoretical question is to provide bounds on the possible amount of extrapolation, depending on the sample perturbation level and the function prior. In this paper we consider soft extrapolation of entire functions of finite order and type (containing the class of bandlimited functions as a special case), multiplied by a super-exponentially decaying window (such as a Gaussian). We consider a weighted least-squares polynomial approximation with judiciously chosen number of terms and a number of samples which scales linearly with the degree of approximation. It is shown that this simple procedure provides stable recovery with an extrapolation factor which scales logarithmically with the perturbation level and is inversely proportional to the characteristic lengthscale of the function. The pointwise extrapolation error exhibits a H\"{o}lder-type continuity with an exponent derived from weighted potential theory, which changes from 1 near the available samples, to 0 when the extrapolation distance reaches the characteristic smoothness length scale of the function. The algorithm is asymptotically minimax, in the sense that there is essentially no better algorithm yielding meaningfully lower error over the same smoothness class. When viewed in the dual domain, the above problem corresponds to (stable) simultaneous de-convolution and super-resolution for objects of small space/time extent. Our results then show that the amount of achievable super-resolution is inversely proportional to the object size, and therefore can be significant for small objects

    An analysis of training and generalization errors in shallow and deep networks

    Full text link
    This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation function. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization error in approximation of compositional functions in order to take full advantage of the compositional structure. Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error. We give estimates on exactly how many parameters ensure both zero training error as well as a good generalization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error as well as a good generalization error and estimate how much error to expect at which test data.Comment: 21 pages; Accepted for publication in Neural Network

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage
    corecore